Die Mehrheit der Autofahrer legt täglich eine durchschnittliche Strecke von 40-60km pro Tag zurück. Aus diesem Grund stellen Plug-In Hybridfahrzeuge eine geeignete Wahl dar, da diese sich hervorragend für eine täglichen Aktionsradius von weniger als 200km eignen. Der anschließende Aufladevorgang des elektrischen Energiespeichers kann dann über Nacht an der heimischen Steckdose erfolgen.
Der schematische Aufbau der benötigten elektrischen Komponenten für ein Plug-In Hybridfahrzeug ist im nachfolgenden Bild dargestellt.
Mit Hilfe einer Batterieladeeinheit wird die 220V Wechselspannung des Hausstromanschluss in eine Gleichspannung für die Hochvolt Batterie umgewandelt, damit diese geladen werden kann.
Die Hochvolt Batterie hat einen wesentlich größeren Energieinhalt als vergleichbare Batterien in anderen Hybridfahrzeugen, da die elektrische Reichweite wesentlich größer ist.
Ein grundlegender Unterschied besteht auch in der Entladetiefe der Batterie: Voll-Hybridfahrzeuge nutzen einen Ladebereich der Batterie von ca. 15% -20% der gesamten Batterieladung, um damit eine Anzahl von mehreren hundertausend Ladezyklen der Batterie zu erreichen, bevor diese nicht mehr brauchbar ist. Ein Plug-In Hybrid nutzt im Gegensatz dazu den gesamten Ladebereich der Batterie.
Oftmals wird die elektrische Reichweite von Plug-In Hybridautos durch einen Verbrennungsmotor mit einem geringen Hubraum ergänzt. Unterschreitet der Ladeszustand einen Gernzwert, so wird der Verbrennungsmotor genutzt um einen Generator anzutreiben, der die Batterie wieder laden kann. Somit kann dann eine kombinierte Reichweite des Fahrzeugs erreicht werden, die konventionellen Fahrzeugen entspricht.
Der grundlegende Aufbau des Plug-In Hybrid mit einem kleinen Verbrennungsmotor (Downsizing) ist im nachfolgenden Bild dargestellt:
Die Stromerfassung in Prototypen kann am Besten mit hochgenauen und dynamischen Strommeßzangen erfolgen. Potentialfreie Strom-Meßzangen